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ECL 4340

POWER SYSTEMS

LECTURE 14
CONTROL OF POWER FLOWS, FAST POWER

FLOW, INTEGRATION OF RENEWABLES

ANNOUNCEMENTS

 Be reading Chapter 6, also Chapter 2.4 
(Network Equations).

 HW 8 is uploaded; Due date: October 28.  

POWER SYSTEM CONTROL

• A major issue with power system operation is the 
limited capacity of the transmission system
 lines/transformers have limits (usually thermal)

 no direct way of controlling flow down a transmission line 
(e.g., there are no valves to close to limit flow)

 open transmission system access associated with industry 
restructuring is stressing the system in new ways

• We need to indirectly control transmission line flow 
by changing the generator outputs

• Similar control issues with voltage

3

1

2

3



10/18/2022

2

INDIRECT TRANSMISSION LINE

CONTROL

What we would like to determine is how a change in 
generation at bus k affects the power flow on a line 
from bus i to bus j.

The assumption is
that the change
in generation is
absorbed by the
slack bus
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POWER FLOW SIMULATION - BEFORE

• One way to determine the impact of a generator change 
is to compare a before/after power flow.

• For example below is a three-bus case with an overload

Z for all lines = j0.1

One Two

 200 MW
 100 MVR

200.0 MW
 71.0 MVR

Three 1.000 pu

   0 MW
  64 MVR

 131.9 MW

  68.1 MW   68.1 MW

124%
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POWER FLOW SIMULATION - AFTER

Z for all lines = j0.1
Limit for all lines = 150 MVA

One Two

 200 MW
 100 MVR

105.0 MW
 64.3 MVR

Three
1.000 pu

  95 MW
  64 MVR

 101.6 MW

   3.4 MW   98.4 MW

 92%

100%

Increasing the generation at bus 3 by 95 MW (and hence decreasing 
it at bus 1 by a corresponding amount), results in 

• 30.3 MW drop on the line from bus 1 to 2, and 
• 64.7 MW drop on the flow from 1 to 3.  
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Expressed as a 
percent, 30.3/95
=32% and
64.7/95=68%
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CONTROL OF POWER FLOW
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CONTROL OF POWER FLOW
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CONTROL OF POWER FLOW

CONTROL OF POWER FLOW

SOLVING LARGE POWER SYSTEMS

• The most difficult computational task is inverting the 
Jacobian matrix
 inverting a full matrix is an order N3 operation, meaning the 

amount of computation increases with the cube of the size

 this amount of computation can be decreased substantially 
by recognizing that since the Ybus is a sparse matrix, the 
Jacobian is also a sparse matrix

 using sparse matrix methods results in a computational 
order of about N1.5. 

 this is a substantial savings when solving systems with tens 
of thousands of buses
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FAST POWER FLOW

DISHONEST NEWTON-RAPHSON

• Since most of the time in the Newton-Raphson 
iteration is spend calculating the inverse of the 
Jacobian, one way to speed up the iterations is to 
only calculate/inverse the Jacobian occasionally
– known as the “Dishonest” Newton-Raphson

– an extreme example is to only calculate the Jacobian for 
the first iteration

( 1) ( ) ( ) -1 ( )

( 1) ( ) (0) -1 ( )

( )

Honest: - ( ) ( )

Dishonest: - ( ) ( )

Both require ( )  for a solution

v v v v

v v v

v 











x x J x f x

x x J x f x

f x
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DISHONEST NEWTON-RAPHSON

EXAMPLE

2

1(0)
( ) ( )

( ) ( ) 2
(0)

( 1) ( ) ( ) 2
(0)

Use the Dishonest Newton-Raphson to solve 

( )  - 2 0

( )
( )

1
(( ) - 2)

2
1

(( ) - 2)
2

v v

v v

v v v

f x x

df x
x f x
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x x
x

x x x
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



 

 
   

 
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     
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DISHONEST N-R EXAMPLE, CONT’D

( 1) ( ) ( ) 2
(0)

(0)

( ) ( )

1
(( ) - 2)

2

Guess x 1.  Iteratively solving we get

v (honest) (dishonest)

0 1 1

1 1.5 1.5

2 1.41667 1.375

3 1.41422 1.429

4 1.41422 1.408

v v v

v v

x x x
x

x x

      



We pay a price
in increased 
iterations, but
with decreased 
computation
per iteration

19

DECOUPLED POWER FLOW

• The completely Dishonest Newton-Raphson is not 
used for power flow analysis.  However, several 
approximations of the Jacobian matrix are used.  

• One common method is the Decoupled Power Flow.  
In this approach approximations are used to 
decouple the real and reactive power equations. 

20

DECOUPLED POWER FLOW FORMULATION

( ) ( )

( ) ( )
( )

( )( ) ( ) ( )

( )
2 2 2

( )

( )

General form of the power flow problem

( )
( )

( )

where

( )

( )

( )

v v

v v
v

vv v v

v
D G

v

v
n Dn Gn

P P P

P P P

  
                        
   

  
 

   
   

P P
θθ V P x

f x
Q xVQ Q

θ V

x

P x

x


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DECOUPLING APPROXIMATION
( ) ( )

( )

( ) ( )
( )

( ) ( ) ( )

Usually the off-diagonal matrices, and 

are small.  Therefore we approximate them as zero:

( )
( )

( )

Then the problem 

v v

v

v v
v

v v v

 
 

 
            
          

P Q
V θ

P
0

θ P xθ
f x

Q Q xV0
V

1 1( ) ( )
( )( ) ( ) ( )

can be decoupled

( ) ( )
v v

vv v v
 

                  

P Q
θ P x V Q x

θ V
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OFF-DIAGONAL JACOBIAN TERMS

 

 

Justification for Jacobian approximations:

1. Usually r x, therefore 

2. Usually  is small so sin 0

Therefore

cos sin 0

cos sin 0

ij ij

ij ij

i
i ij ij ij ij

j

i
i j ij ij ij ij

j

G B

V G B

V V G B

 

 

 



   


    


P

V

Q
θ

 
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FAST DECOUPLED POWER FLOW

• By continuing with our Jacobian approximations we 
can actually obtain a reasonable approximation that is 
independent of the voltage magnitudes/angles.

• The Jacobian need only be built/inverted once.

• This approach is known as the fast decoupled power 
flow (FDPF)

• FDPF uses the same mismatch equations as standard 
power flow so it should have same solution

• The FDPF is widely used, particularly when we only 
need an approximate solution such as in contingency 
analysis 24
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FDPF APPROXIMATIONS

ij

( ) ( )
( )( ) 1 1

( ) ( )

bus

The FDPF makes the following approximations:

1. G 0

2. 1

3. sin 0 cos 1

Then

( ) ( )

Where  is just the imaginary part of the ,

except the slack bus row/co

i

ij ij

v v
vv

v v

V

j

 

 





 

    

 

P x Q x
θ B V B

V V
B Y G B

lumn are omitted 
25

FDPF THREE BUS EXAMPLE

Line Z = j0.07

Line Z = j0.05 Line Z = j0.1

One Two

 200 MW
 100 MVR

Three 1.000 pu

 200 MW
 100 MVR

Use the FDPF to solve the following three bus system

34.3 14.3 20

14.3 24.3 10

20 10 30
bus j

 
   

  

Y

26

FDPF THREE BUS EXAMPLE, CONT’D

1

(0)(0)
2 2

3 3

34.3 14.3 20
24.3 10

14.3 24.3 10
10 30

20 10 30

0.0477 0.0159

0.0159 0.0389

Iteratively solve, starting with an initial voltage guess

0 1

0 1

bus j

V

V






 
            

  
    

     
         

Y B

B

(1)
2

3

0 0.0477 0.0159 2 0.1272

0 0.0159 0.0389 2 0.1091





  

                                
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FDPF THREE BUS EXAMPLE, CONT’D

(1)
2

3

i

i i1

(2)
2

3

1 0.0477 0.0159 1 0.9364

1 0.0159 0.0389 1 0.9455

P ( )
( cos sin )

V V

0.1272 0.0477 0.0159

0.1091 0.0159 0.0389

n
Di Gi

k ik ik ik ik
k

V

V

P P
V G B 






          
                    


  

                   

x

(2)
2

3

0.151 0.1361

0.107 0.1156

0.924

0.936

0.1384 0.9224
Actual solution: 

0.1171 0.9338

V

V

         

   
     

   
       

θ V
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“DC” POWER FLOW

• The “DC” power flow makes the most severe 
approximations:
 completely ignore reactive power, assume all the voltages 

are always 1.0 per unit, ignore line conductance

• This makes the power flow a linear set of equations, 
which can be solved directly

• The advantage is it is fast, and it has a guaranteed 
solution.  The disadvantage is the degree of 
approximation.  However, it is used sometimes.  

1θ B P

29

DC POWER FLOW EXAMPLE
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DC POWER FLOW EXAMPLE

31

DC POWER FLOW EXAMPLE

32

DC POWER FLOW 5 BUS EXAMPLE

slack

One

Two

ThreeFourFive
A

MVA

A

MVA

A

MVA

A

MVA

A

MVA

1.000 pu 1.000 pu

 1.000 pu

1.000 pu

1.000 pu
 0.000 Deg -4.125 Deg

-18.695 Deg

-1.997 Deg

 0.524 Deg

 360 MW
   0 Mvar

 520 MW
   0 Mvar

 800 MW
   0 Mvar

  80 MW
   0 Mvar

Notice with the dc power flow all of
the voltage magnitudes are 1 per unit.  
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INTEGRATION OF

RENEWABLE ENERGY

INTEGRATION OF

RENEWABLE ENERGY

INTEGRATION OF

RENEWABLE ENERGY
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WIND TURBINE GENERATORS

WIND TURBINE GENERATORS

generator

full power

Plant
Feeders

ac
to
dc

dc
to
ac

generator

partial power

Plant
Feeders

ac
to
dc

dc
to
ac

generator

Slip power
as heat loss

Plant
Feeders

PF control
capacitor s

ac
to
dc

generator

Plant
Feeders

PF control
capacitor s

Type 1 Type 2 Type 3 Type 4

Based on characteristics of grid interface

Type 1 – conventional induction generator

Type 2 – wound rotor induction generator with 
variable rotor resistance

Type 3 – doubly‐fed induction generator

Type 4 – full converter interface

TECHNICAL CHALLENGES
Equivalent machine (generic model) with 
appropriate VAR range, depending on dispatch, 
assuming fixed wind speed

Main station 
Xfm

Equivalent feeder impedance 
and shunt admittance

Equivalent pad-
mounted transformer

Equivalent low-voltage 
shunt compensation, if anyP.O.I.

Explicit plant-level shunt  
compensation, if any

System

P.O.I.

SystemA single-machine equivalent model should 
be good for general-purpose studies of 
regional and local  interest.

A multiple-machine equivalent model may 
be needed for detailed studies of local 
interest.
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TECHNICAL CHALLENGES

 Simplification of aerodynamic characteristics 

 The mechanical power (Pmech) applied to the generator is a function 
of the performance factor (Cp)

 Pmech = ½ × (air density) × (swept area) × Cp × (wind speed)3

 Cp is a function of blade pitch and tip‐speed ratio (or just rotor 
speed, if wind speed is assumed constant)

 During a typical dynamic simulation, blade pitch and tip speed ratio 
vary, thus Cp and Pmech will also vary

 Cp is modeled using a look‐up table or Cpmatrix specific to each 
WTG provided by the manufacturer usually on a confidentiality basis

TECHNICAL CHALLENGES
 Example

 Typical Cp curve (left) for a fixed‐speed WTG (Type 1).  The dashed 
magenta line shows operating points that correspond to the 
steady‐state power curve (right)

 Can a simplified model that captures the important performance 
characteristics of this type of WTG?

Tip-Speed Ratio )

Pitch Angle )

Coefficient of Performance
(Cp)

Pitch AngleTrajectory for
Increasing Wind Speed

TECHNICAL CHALLENGESThank you! 
Go Wind!
Go Solar!
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